Selasa, 05 Februari 2013

Energi yang dapat diperbarui di kendaraan

Ketika anda melihat sebuah lintasan seperti ini apa yang anda bisa manfaatakan????
ya..... mungkin sebagian besar ilmuwan akan mempunyai ide itu adalah konsep energi potensial yang bisa menyebabkan energi kinetik.
Laluuuuu......
Apa yang bisa anda lakukan???
oke .... ini berdasarkan Penilaian penulis.....(Karena setiap penilaian orang terhadap suatu obyek berbeda beda)
Langsung saja >>>>

1.Lintasan menurun merupakan jalan yang memiliki suatu ketinggian, tentunya sebagai sumber energi    potensial gravitasi.

2. Ketika ada sebuah kendaraan yang berjalan dengan kecepatan awal sebesar V pada lintasan menurun maka kendaraan tersebut akan mengalami peningkatan kecepatan atau mengalami peningkatan energi kinetik akibat adanya energi potensial gravitasi.

Lebih jelasnya kita bisa melihat perhitungan energi kinetik dari mas Bro Steven Holzner

Calculating Rotational Kinetic Energy on a Ramp
In physics, objects can have both linear and rotational kinetic energy. This can occur when an object rolls down a ramp instead of sliding, as some of its gravitational potential energy goes into its linear kinetic energy, and some of it goes into its rotational kinetic energy.
A solid cylinder and a hollow cylinder ready to race down a ramp.

Look at the preceding figure, where you’re pitting a solid cylinder against a hollow cylinder in a race down the ramp. Each object has the same mass. Which cylinder is going to win? In other words, which cylinder will have the higher speed at the bottom of the ramp? When looking only at linear motion, you can handle a problem like this by setting the potential energy equal to the final kinetic energy (assuming no friction!) like this:

where m is the mass of the object, g is the acceleration due to gravity, and h is the height at the top of the ramp. This equation would let you solve for the final speed. Since the mass, m, cancels out from both sides of the equation, the final speed for linear motion without rotation is independent of mass.
But the cylinders are rolling in this case, which means that the initial gravitational potential energy becomes both linear kinetic energy and rotational kinetic energy. You can now write the equation as
You want to solve for v, so try grouping things together. You can factor (1/2)v2 out of the two terms on the right:
Isolating v, you get the following:
For the hollow cylinder, the moment of inertia equals mr2. For a solid cylinder, on the other hand, the moment of inertia equals (1/2)mr2. Substituting for I for the hollow cylinder gives you the hollow cylinder’s final velocity:
Substituting for I for the solid cylinder gives you the solid cylinder’s velocity:
Now the answer becomes clear.
1.15 times as fast, so the solid cylinder will win.
The hollow cylinder has as much mass concentrated at a large radius as the solid cylinder has distributed from the center all the way out to that radius, so this answer makes sense. With that large mass way out at the edge, the hollow cylinder doesn’t need to go as fast to have as much rotational kinetic energy as the solid cylinder. In fact, since the moment of inertia, I, always depends on the mass of the object, the mass term cancels out from top and bottom of our expression above for the final velocity of the object after it has rolled down the ramp. This means that the final velocity does not depend upon the mass at all, but only upon how that mass is distributed around the rotational axis. For all shapes that roll, can you guess which one would always win in a race where they roll down a ramp?
Suppose that a car traveled up three different roadways (each with varying incline angle or slope) from the base of a mountain to the summit of the mountain. Which path would require the most gasoline (or energy)? Would the steepest path (path AD) require the most gasoline or would the least steep path (path BD) require the most gasoline? Or would each path require the same amount of gasoline?

This situation can be simulated by use of a simple physics lab in which a force is applied to raise a cart up an incline at constant speed to the top of a seat. Three different incline angles could be used to represent the three different paths up the mountain. The seat top represents the summit of the mountain. And the amount of gasoline (or energy) required to ascend from the base of the mountain to the summit of the mountain would be represented by the amount of work done on the cart to raise it from the floor to the seat top. The amount of work done to raise the cart from the floor to the seat top is dependent upon the force applied to the cart and the displacement caused by this force. Typical results of such a physics lab are depicted in the animation below.
Observe in the animation that each path up to the seat top (representing the summit of the mountain) requires the same amount of work. The amount of work done by a force on any object is given by the equation
Work = F * d * cosine(Theta)
where F is the force, d is the displacement and Theta is the angle between the force and the displacement vector.
The least steep incline (30-degree incline angle) will require the least amount of force while the most steep incline will require the greatest amount of force. Yet, force is not the only variable affecting the amount of work done by the car in ascending to a certain elevation. Another variable is the displacement which is caused by this force. A look at the animation above reveals that the least steep incline would correspond to the largest displacement and the most steep incline would correspond to the smallest displacement. The final variable is Theta - the angle between the force and the displacement vector. Theta is 0-degrees in each situation. That is, the force is in the same direction as the displacement and thus makes a 0-degree angle with the displacement vector. So when the force is greatest (steep incline) the displacement is smallest and when the force is smallest (least steep incline) the displacement is largest. Subsequently, each path happens to require the same amount of work to elevate the object from the base to the same summit elevation.
Another perspective from which to analyze this situation is from the perspective of potential and kinetic energy and work. The work done by an external force (in this case, the force applied to the cart) changes the total mechanical energy of the object. In fact, the amount of work done by the applied force is equal to the total mechanical energy change of the object. The mechanical energy of the cart takes on two forms - kinetic energy and potential energy. In this situation, the cart was pulled at a constant speed from a low height to a high height. Since the speed was constant, the kinetic energy of the cart was not changed. Only the potential energy of the cart was changed. In each instance (30-degree, 45-degree, and 60-degree incline), the potential energy change of the cart was the same. The same cart was elevated from the same initial height to the same final height. If the potential energy change of each cart is the same, then the total mechanical energy change is the same for each cart. Finally, it can be reasoned that the work done on the cart must be the same for each path.